Brain Injury and Recovery
Theoretical and Controversial Issues
Brain injury and recovery.

Includes bibliographies and index.

RC387.5.B73 1988 616.8 88-12593

DOI: 10.1007/978-1-4613-0941-3

Cover: "Un Infirmé," an etching by Jacques Callot (1592–1635) of a person with left hemiplegia.

Softcover reprint of the hardcover 1st edition 1988
A Division of Plenum Publishing Corporation
233 Spring Street, New York, N.Y. 10013

All rights reserved
No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher
Contributors

C. ROBERT ALMLI • Programs in Occupational Therapy and Neural Sciences, Departments of Anatomy and Neurobiology, Preventive Medicine, and Psychology, Washington University School of Medicine, St. Louis, Missouri 63110
PAUL BACH-Y-RITA • Department of Rehabilitation Medicine, University of Wisconsin, Madison, Wisconsin 53792
PAUL D. COLEMAN • Department of Neurobiology and Anatomy, University of Rochester Medical Center, Rochester, New York 14642
ROBERT W. DYKES • Departments of Physiology, Surgery, and Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 1A1, Canada
SVEN O. E. EBBESSON • Institute of Marine Science, University of Alaska-Fairbanks, Fairbanks, Alaska 99775-1080
STANLEY FINGER • Psychology Department and Neural Sciences Program, Washington University, St. Louis, Missouri 63130
DOROTHY G. FLOOD • Department of Neurology, University of Rochester Medical Center, Rochester, New York 14642
GABRIEL P. FROMMER • Department of Psychology, Indiana University, Bloomington, Indiana 47405
FRED H. GAGE • Department of Neurosciences, University of California, at San Diego, La Jolla, California 92093
ROBERT B. GLASSMAN • Department of Psychology, Lake Forest College, Lake Forest, Illinois 60045
SUSAN GRAY-SILVA • Behavioral Neuropsychology Laboratory, Department of Psychology, North Carolina State University, Raleigh, North Carolina 27695-7801
SAMUEL H. GREENBLATT • Department of Neurological Surgery, Medical College of Ohio, Toledo, Ohio 43699
ROBERT L. ISAACSON • Department of Psychology and Center for Neurobehavioral Science, University Center at Binghamton, Binghamton, New York 13901
ANDREW KERTESZ • Department of Clinical Neurological Sciences, Research Institute, St. Joseph’s Hospital, University of Western Ontario, London, Ontario N6A 4V2, Canada
BRYAN KOLB • Department of Psychology, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
SCOTT LAURENCE • Behavioral Neuropsychology Laboratory, Department of Psychology, Clark University, Worcester, Massachusetts 01610
N. DAVIS LEVERE • Dorothea Dix Hospital, Raleigh, North Carolina 27611
T. E. LEVERE • The Brain Research Laboratory, Department of Psychology, North Carolina State University, Raleigh, North Carolina 27695-7801
RAJU METHERATE • Departments of Physiology, Surgery, and Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 1A1, Canada
DONALD R. MEYER • Department of Psychology, The Ohio State University, Columbus, Ohio 43210. Present address: 476 Overbrook Drive, Columbus, Ohio 43214
ULF NORRSSELL • Departments of Physiology and Neurology, University of Göteborg, S-400 33 Göteborg, Sweden
JERROLD S. PETROFSKY • Department of Psychiatry, University of California at Irvine, Irvine, California 92717
GEORGE P. PRIGATANO • Section of Neuropsychology, Barrow Neurological Institute, Phoenix, Arizona 85013
MARY D. SLAVIN • Behavioral Neuropsychology Laboratory, Department of Psychology, Clark University, Worcester, Massachusetts 01610
AARON SMITH • University of Michigan NHR Project, Ann Arbor, Michigan 48103
DONALD G. STEIN • Dean of the Graduate School and Associate Provost for Research, Rutgers University, Newark, New Jersey 07102
SILVIO VARON • Department of Biology, University of California at San Diego, La Jolla, California 92093
IAN Q. WHISHAW • Department of Psychology, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
Preface

The idea for the present volume grew from discussions that the four of us had among ourselves and with our colleagues at recent scientific meetings. All of us were impressed by the wealth of empirical data that was being generated by investigators interested in brain damage and recovery from both behavioral and biological orientations. Nevertheless, we were concerned about the relative paucity of attempts to evaluate the data provided by new technologies in more than a narrow context or to present new theories or reexamine time-honored ideas in the light of new findings.

We recognized that science is guided by new technologies, by hard data, and by theories and ideas. Yet we were forced to conclude that, although investigators were often anxious to publicize new methods and empirical findings, the same could not be said about broad hypotheses, underlying concepts, or inferences and speculations that extended beyond the empirical data. Not only were many scientists not formally discussing the broad implications of their data, but, when stimulating ideas were presented, they were more likely to be heard in the halls or over a meal than in organized sessions at scientific meetings.

There are probably many explanations for this relative lack of theory. One might be that funding in the brain sciences currently emphasizes the development of new technologies and the measurement of discrete biological events. Another factor is that as graduate training has become progressively more specialized and technique-oriented, the holistic–historical perspective, which is conducive to generating broad theories, has been displaced. Related to this, the consensus today clearly seems to be that the safest path to a successful career is the generation of large numbers of empirical, “hypothesis-free” experiments that are uncontroversial and thus guarantee quick publication. Moreover, since many journals are largely data-oriented, publishing a theoretical paper can be difficult, especially if the concepts are controversial or if the idea is not yet supported by an extensive data base.

Because of these factors, and because the study of recovery from brain damage is still in a relatively early stage of development, the four of us decided that a volume encouraging established scientists to present or evaluate theoretical
issues in this field would be an interesting and informative endeavor. We wanted to have an opportunity not only to present new ideas but also to evaluate existing theories as well as the contributions of selected historical figures such as John Hughlings Jackson, Kurt Goldstein, and Margaret Kennard.

The result of this effort is the present volume, which examines both molar and molecular contemporary theories about the effects of brain injuries and processes of recovery. Selected chapters also look at the origins and current status of ideas presented by earlier theorists, and some even question how "recovery" should be defined, and why this field continues to be so controversial.

The production of this book was a very stimulating experience for all of us. It forced us to stand back and think—to go beyond the data at hand, to look at the "big picture," and to ask whether the experiments being conducted were even capable of answering some of the questions being asked. We think that the contributions to this book will likewise entice the reader to think about the issues presented here, the broad implications of his or her own specific scientific pursuits, and the direction of current research on the topic of recovery of function. We hope that this volume will stimulate and promote formal discussions of the issues that face us as we try to understand the dynamics of the nervous system and the various events that follow brain injuries.

Stanley Finger
St. Louis
T. E. LeVere
Raleigh
C. Robert Almli
St. Louis
Donald G. Stein
Newark
Contents

Chapter 1

Toward a Definition of Recovery of Function

C. ROBERT ALMLI AND STANLEY FINGER

1. The Problem Defined 1
2. Definitions of Recovery of Function 3
3. Recovery or Behavioral Sparing? 5
4. Recovery or Compensation? 6
5. Recovery as Absolute and Inferential 7
6. Mechanisms of Recovery 9
7. Summary and Conclusions 12
References .. 13

Chapter 2

Neural System Imbalances and the Consequence of Large Brain Injuries

T. E. LeVERE

1. Introduction ... 15
2. Subtotal Lesions ... 16
 2.1. Normalization and Recovery of Function 16
 2.2. Some Limitations 17
3. Complete Lesions .. 18
 3.1. Recovery without Normalization 18
 3.2. The Nature of the Behavioral Deficit 19
 3.3. Some Supporting Data 21
 3.4. The Chronic Consequence of Large Injuries 22
4. Conclusions ... 25
References .. 26
Chapter 3

Bases of Inductions of Recoveries and Protections from Amnesias

Donald R. Meyer

1. Introduction ... 29
2. Training Effects ... 31
3. Drug Effects ... 33
4. Memory and Remembering 34
5. Controversial Issues 37
References .. 42

Chapter 4

Neural Spare Capacity and the Concept of Diaschisis: Functional and Evolutionary Models

Robert B. Glassman and Aaron Smith

1. Introduction ... 45
 1.1. Intimations of Spare Capacity 45
 1.2. Do Large Ablations More Readily Reveal Spare Capacity? 46
 1.3. Evolutionary and Functional Puzzle of Spare Capacity 46
2. The Elements of Brain Information Processing
 Are Diffuse Domains 47
 2.1. Unrealistic Aspects of Machine Metaphors and the Bugaboo Mosaic ... 47
 2.2. Diffuse Domains Are Adequate for Maintaining Distinctions: A Metaphor of the Brain as an Immense Set of Counters 47
 2.3. Von Monakow's Concept of Diaschisis 51
 2.4. Experimental Studies of Diaschisis 54
 2.5. Diaschisis in the Model 54
 2.6. Implications of the Model for Understanding Early Brain Damage ... 55
3. Error and Reliability when Large Numbers of Subsystems Interact ... 56
 3.1. Introduction to Neuroeconomics: Costs and Benefits in the Natural Selection of Spare Neural Capacity 56
 3.2. Two Types of Safety Factor: Reiteration (Redundancy) and Aiming High ... 57
 3.3. Numerical Demonstration of the Importance of the Reiterative Safety Factor ... 58
 3.4. Implications of the Numerical Demonstration for Ablation Research ... 59
 3.5. Reiterations Are Unlikely to Comprise Large, Complex Units ... 60
3.6. Relevance of Research on Brain Size for the Safety Factor Hypothesis .. 61
3.7. Implications when There Is Additional Loss of Tissue 62
4. Five Possible Nonneural Preadaptations for Safety Factor 62
 4.1. Developmental Heterochrony 62
 4.2. The Head as a Releaser of Imprinting at Birth 63
 4.3. The Visual Proportions of Infants as Affectional Releasers . 63
 4.4. A Large Head on a Large Body Is Fearsome rather than Cute 63
 4.5. Surface/Volume Ratio in Thermoregulation 64
5. An Important Implication of Nonneural Natural Selection Factors for Neural Information Processing, Diaschisis, and Recovery 64
6. Summary .. 65
References .. 65

Chapter 5
Kurt Goldstein and Recovery of Function
GABRIEL P. FROMMER AND AARON SMITH
1. Introduction .. 71
2. Methodological Assumptions and Empirical Origins 73
3. Theoretical Approach ... 76
4. Localization .. 76
5. Psychological Deficits following Brain Damage 79
6. Psychological Testing of Brain-Damaged Patients 81
7. Recovery and Rehabilitation 82
8. Significance for Neuropsychology 84
References .. 86

Chapter 6
Assumptions about the Brain and Its Recovery from Damage
ROBERT L. ISAACSON
1. Mechanisms of Brain Function 89
2. MacLean and the Triune Brain 91
3. Multiple Functions of Neural Systems 92
4. The Effects of Damage ... 93
 4.1. Are Any Changes “Absolute”? 93
 4.2. Motivational Changes following Brain Damage 94
5. Secondary Effects of Brain Damage 96
6. Residual Visual Abilities ... 96
7. The Extent of Stroke-Induced Damage 99
References .. 101
Chapter 7

Mass Action and Equipotentiality Reconsidered
Bryan Kolb and Ian Q. Whishaw

1. Introduction and Historical Roots 103
2. Do We Need Mass Action and Equipotentiality? 105
 2.1. Principles of Cortical Function 106
 2.2. Principles of Behavior ... 109
3. Evidence of Recovery and Nonrecovery 109
 3.1. Distinguishing between Getting Better and Recovery 109
 3.2. Examining the Evidence for "Recovery of Function" 110
 3.3. Recovery, Mass Action, and Equipotentiality 113
4. Conclusions ... 114
References .. 114

Chapter 8

Margaret Kennard and Her “Principle” in Historical Perspective
Stanley Finger and C. Robert Almlı

1. Introduction ... 117
2. Education and Background .. 118
3. Lesion Development and Motor Function 119
4. Historical Antecedents .. 121
5. Deficits following Early Lesions ... 122
6. Theoretical Formulations ... 124
7. Serial Lesions .. 125
8. Other Pursuits and Later Contributions 127
9. Conclusions ... 128
References .. 129

Chapter 9

Infant Brain Injury: The Benefit of Relocation and the Cost of Crowding
N. Davis Levere, Susan Gray-Silva, and T. E. Levere

1. Introduction ... 133
2. The Relocation of Speech .. 134
 2.1. The Phenomenon .. 134
 2.2. Two Necessary Conditions for Speech Relocation 135
 2.3. The Cost of Relocation: Crowding of Functions 137
 2.4. Conclusions ... 137
3. Relocation of Functions and Crowding in Animals 137
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1. Hemispheric Specialization and Asymmetry</td>
<td>137</td>
</tr>
<tr>
<td>3.2. Bilateral Brain Injury and Relocation</td>
<td>139</td>
</tr>
<tr>
<td>3.3. Infant Lesions and Compound Cue Discriminations</td>
<td>141</td>
</tr>
<tr>
<td>4. Some Final Comments</td>
<td>146</td>
</tr>
<tr>
<td>References</td>
<td>148</td>
</tr>
</tbody>
</table>

Chapter 10

Arguments against Redundant Brain Structures

Ulf Norrsell

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>151</td>
</tr>
<tr>
<td>2. Too Much Brain</td>
<td>152</td>
</tr>
<tr>
<td>3. Neuronal Redundancy during Infancy</td>
<td>153</td>
</tr>
<tr>
<td>4. Restatement of Problem</td>
<td>154</td>
</tr>
<tr>
<td>5. The Motor System</td>
<td>154</td>
</tr>
<tr>
<td>6. The Visual System</td>
<td>155</td>
</tr>
<tr>
<td>7. The Auditory System</td>
<td>156</td>
</tr>
<tr>
<td>8. The Somatosensory System</td>
<td>157</td>
</tr>
<tr>
<td>9. Autonomic Functions</td>
<td>159</td>
</tr>
<tr>
<td>10. Comment</td>
<td>160</td>
</tr>
<tr>
<td>References</td>
<td>161</td>
</tr>
</tbody>
</table>

Chapter 11

Another Look at Vicariation

Mary D. Slavin, Scott Laurence, and Donald G. Stein

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Vicariation: Relationship to Localization of Function</td>
<td>165</td>
</tr>
<tr>
<td>2. What Is Recovery?</td>
<td>166</td>
</tr>
<tr>
<td>3. Vicariation and Other Theories of Recovery</td>
<td>167</td>
</tr>
<tr>
<td>4. Attempts to Locate Recovered Function</td>
<td>170</td>
</tr>
<tr>
<td>5. Changing Concepts of Brain Function and Another Look at Vicariation</td>
<td>174</td>
</tr>
<tr>
<td>6. Conclusions</td>
<td>177</td>
</tr>
<tr>
<td>References</td>
<td>178</td>
</tr>
</tbody>
</table>

Chapter 12

Hughlings Jackson’s Theory of Localization and Compensation

Samuel H. Greenblatt

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>181</td>
</tr>
<tr>
<td>2. Some Aspect of Jackson’s Role in the Development of Modern Neurology</td>
<td>181</td>
</tr>
</tbody>
</table>
4. Critique: Historical and Contemporary 187
 4.1. Time Frames .. 187
 4.2. The Motor Model 188
References .. 189

Chapter 13
The Parcellation Theory and Alterations in Brain Circuitry after Injury
SVEN O. E. EBBESSON
1. Introduction .. 191
2. Invasion .. 193
3. Overlap of Connections Is a Feature of Primitive and Developing Brains ... 193
4. Ontogenetic Parcellation 195
5. Cytodiversification 195
6. Experimentally Induced Sprouting and Accidental Brain Injury ... 196
7. Conclusion .. 197
References .. 198

Chapter 14
Trophic Hypothesis of Neuronal Cell Death and Survival
FRED H. GAGE AND SILVIO VARON
1. Introduction .. 201
2. Key Terms and Concepts 202
3. The Neuronotrophic Factor Hypothesis 205
5. Nerve Growth Factor's Functional Roles in the CNS 210
6. Summary and Conclusions 210
 References .. 211

Chapter 15
Sensory Cortical Reorganization following Peripheral Nerve Injury
ROBERT W. DYKES AND RAJU METHERATE
1. Somatotopic Order in the Primary Somatosensory Cortex 215
2. Control of Somatotopic Order 218
3. Acetylcholine as a Permissive Agent for Neuronal Plasticity 219
4. Neuronal Responses following Deafferentation 220
CONTENTS

5. The Effects of Acetylcholine on Neurons in Normal Somatosensory Cortex ... 223
6. Cellular Mechanisms ... 225
7. The Hypothesis .. 228
8. Summary ... 229
References .. 231

Chapter 16

Is Dendritic Proliferation of Surviving Neurons a Compensatory Response to Loss of Neighbors in the Aging Brain?
PAUL D. COLEMAN AND DOROTHY G. FLOOD

1. Introduction .. 235
2. The Aging Brain .. 236
3. Regressive Influences .. 241
4. Balance of Influences .. 243
References .. 244

Chapter 17

Practical and Theoretical Issues in the Use of Fetal Brain Tissue Transplants to Promote Recovery from Brain Injury
DONALD G. STEIN

1. Introduction .. 249
2. Specificity of Neural Connections between Host and Transplant Tissue .. 250
 2.1. Some New Experimental Tests of Transplant Specificity 253
 2.2. Are Transplants Morphologically “Normal”? 255
 2.3. Is Homologous Embryonic Tissue Required to Obtain Recovery? ... 255
3. Is There a Critical Postoperative Period for Transplant Effectiveness? ... 258
4. Do Trophic Factors Play a Role in Transplant-Induced Recovery? ... 261
 4.1. Recovery Seems to Persist when Transplants Are Removed 261
 4.2. Do Transplants Release or Stimulate the Production of Trophic Substances? ... 263
 4.3. Glial Cells May Play an Important Role in Transplant-Mediated Functional Recovery ... 266
5. Systemic Injections of Trophic Factors Can also Promote Functional Recovery ... 267
Chapter 18

Functional Electrical Stimulation and Its Application for the Rehabilitation of Neurologically Injured Individuals

Jerrold S. Petrofsky

1. Early History of Electrical Stimulation in Medicine .. 273
2. Recent History of Functional Electrical Stimulation for Patient Therapy in Spinal Cord Injury ... 275
3. Functional Electrical Stimulation .. 276
4. An Isokinetic Muscle Exerciser for Strength Training .. 278
5. An Aerobic Exercise Bicycle for Endurance Training ... 279
6. Physiological Changes and Physical Conditioning Responses to FES-Induced Active Physical Therapy .. 281
 6.1. Background Information ... 281
 6.2. Functional Electrical Stimulation as a Therapeutic Modality 283
 6.3. Cardiovascular Responses ... 283
 6.4. Thermoregulatory Responses .. 290
 6.5. Muscular Response .. 293
7. Functional Electrical Stimulation and Walking ... 294
8. Summary .. 301
References ... 301

Chapter 19

Recovery of Language Disorders: Homologous Contralateral or Connected Ipsilateral Compensation

Andrew Kertesz

1. Introduction .. 307
2. Right Hemisphere Compensation ... 308
3. Ipsilateral Structural Compensation .. 311
4. Factors in Recovery from Aphasia .. 312
 4.1. Initial Severity ... 312
 4.2. Time from Onset ... 313
 4.3. Etiology .. 313
 4.4. Lesion Size .. 313
CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Variations in Language Laterality and Anatomic Asymmetry</td>
<td>315</td>
</tr>
<tr>
<td>6</td>
<td>Conclusions</td>
<td>315</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>318</td>
</tr>
<tr>
<td>Chapter 20</td>
<td>Sensory Substitution and Recovery from “Brain Damage”</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PAUL BACH-Y-RITA</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>323</td>
</tr>
<tr>
<td>2</td>
<td>Sensory Substitution</td>
<td>324</td>
</tr>
<tr>
<td>2.1</td>
<td>Vision Substitution</td>
<td>324</td>
</tr>
<tr>
<td>2.2</td>
<td>Tactile Auditory Substitution</td>
<td>325</td>
</tr>
<tr>
<td>2.3</td>
<td>Cutaneous Sensory Substitution in Leprosy Patients</td>
<td>325</td>
</tr>
<tr>
<td>2.4</td>
<td>Braille and Sign Language</td>
<td>325</td>
</tr>
<tr>
<td>2.5</td>
<td>Electromyographic Sensory Feedback</td>
<td>326</td>
</tr>
<tr>
<td>3</td>
<td>Physiological Considerations</td>
<td>326</td>
</tr>
<tr>
<td>3.1</td>
<td>Peripheral Factors</td>
<td>326</td>
</tr>
<tr>
<td>3.2</td>
<td>Central Nervous System Factors</td>
<td>327</td>
</tr>
<tr>
<td>4</td>
<td>Perceptual Considerations</td>
<td>328</td>
</tr>
<tr>
<td>5</td>
<td>Practical Considerations</td>
<td>331</td>
</tr>
<tr>
<td>6</td>
<td>Conclusions</td>
<td>332</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>333</td>
</tr>
<tr>
<td>Chapter 21</td>
<td>Emotion and Motivation in Recovery and Adaptation after Brain Damage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GEORGE P. PRIGATANO</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>335</td>
</tr>
<tr>
<td>2</td>
<td>Arousal, Emotion, and Motivation after Brain Damage</td>
<td>337</td>
</tr>
<tr>
<td>3</td>
<td>Some Clinical Examples of the Importance of Emotion and Motivation in Recovery after Brain Damage</td>
<td>341</td>
</tr>
<tr>
<td>4</td>
<td>The Problem of Motivation in Neurological Rehabilitation and the Limits of the Damaged Neurological System</td>
<td>344</td>
</tr>
<tr>
<td>5</td>
<td>The Relative Importance of Frontal Lobe Injury versus Temporal Lobe Injury for Recovery of Emotional and Motivational Deficits</td>
<td>345</td>
</tr>
<tr>
<td>6</td>
<td>A Note about Awareness and Its Importance in Psychiatric and Neurologically Oriented Therapies</td>
<td>346</td>
</tr>
<tr>
<td>7</td>
<td>Summary and Conclusions</td>
<td>348</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>349</td>
</tr>
</tbody>
</table>
Chapter 22

Recovery of Function: Sources of Controversy

STANLEY FINGER, T. E. LEVERE, C. ROBERT ALMLI, AND DONALD G. STEIN

1. Introduction ... 351
2. Assessing the Functional Organization of the Brain 353
3. Variability and the Concept of “Normative” Performance 354
4. Multiple Brain Changes and Causality 356
5. Recovery and the Null Hypothesis 357
6. Conclusions ... 359

References .. 360

Index ... 363
Brain Injury and Recovery
1

Toward a Definition of Recovery of Function

C. ROBERT ALMLI and STANLEY FINGER

1. THE PROBLEM DEFINED

The clinical and research literatures on the effects of brain damage can be very confusing because, all too often, the same word or term is used to define or describe different phenomena. Descriptions of various behavioral outcomes after brain damage lack consistent and precise terminology, and nowhere is this more apparent than with the use of the term "recovery of function." Four case studies illustrate the problem.

Case 1. A 40-year-old construction worker was hit on the head by a piece of falling metal. The man was rendered unconscious for a few hours, and after he awakened he appeared to be confused. Testing revealed that his memory was grossly impaired for a few days after the injury. Within a week, however, marked improvements were noted, and 1 month later there was no trace of memory impairment. Attentional and cognitive processes also appeared to be normal. The construction worker soon was able to return to his old job.

Case 2. A newborn baby was found to have a tumor on the left side of the brain in the region of Broca’s area. The tumor was removed, and the child’s progress was followed. The child was late in developing spoken language, but by the time this young girl was of school age, she was speaking fluently. Her teachers found her indistinguishable from her classmates in language functions.

C. ROBERT ALMLI • Programs in Occupational Therapy and Neural Sciences, Departments of Anatomy and Neurobiology, Preventive Medicine, and Psychology, Washington University School of Medicine, St. Louis, Missouri 63110. STANLEY FINGER • Psychology Department and Neural Sciences Program, Washington University, St. Louis, Missouri 63130.
Case 3. Laboratory rats were given bilateral lesions of the lateral hypothalamus and monitored for food and water intake. Those animals not given special care suffered from dehydration and starvation and died within a week after surgery. In contrast, those who were force-fed and provided with highly palatable foods were able to maintain themselves by drinking water and eating standard laboratory chow. At this point, the latter animals were examined more carefully, and it was found that they still were below normal for body weight, that they were more finicky in dealing with foods made slightly bitter, and that they were unable to defend manipulations of body fluid and nutrient levels by altering drinking and feeding habits.

Case 4. A soldier was paralyzed on the right side of his body as a result of a gunshot wound to the head. The man, now confined to a wheelchair, was discharged from the army and given extensive rehabilitation training. Although once strongly right-handed, the soldier learned to use his left hand to eat, write, and brush his hair. When he returned to his home town, he obtained a job as a history teacher. Although he was forced to rely on his wife to drive him to and from work, this physically handicapped individual was doing well at his job and was accepted as an active and important member of the community.

These four case studies are presented because they share an important common feature. In each instance the brain-damaged subject showed notable improvement in overcoming at least some of the immediate effects of an injury to the central nervous system. Yet, on closer examination, each case is distinctly different. In the first case, there appeared to be a complete remission of symptoms over time, and in the second case, the symptoms that would have been expected in an adult never emerged in the child. In the third case, there were some residual effects of the brain injury that indicated that not everything was normal. And, in the fourth case, the salient feature was that the lost function remained lost even though the individual showed the stamina, motivation, and resourcefulness to adjust to his losses by using prosthetics and new strategies.

Are all of these cases showing "recovery of function"? Depending on the definition used and the inferences one is willing to make, one, two, or perhaps even all of the cases might be classified as "recovered," even though each case is obviously unique. The different ways in which the term "recovery" has been used have made it difficult to distinguish between it and other phenomena in the literature, phenomena such as "compensation" and "sparing," which we believe should be differentiated from recovery. In addition, the interchangeable use of descriptive words has at times resulted in such high levels of ambiguity and confusion that it has impeded progress in the field. It is in this context that we felt that a set of clear and precise definitions that could be used by both clinicians and experimentalists should be generated, presented, and defended.

In this chapter we show why recovery of function should be narrowly defined and why different definitions should be given to related phenomena. By defining a number of important terms, demonstrating the salient features of each,