WIFI, WIMAX, AND LTE
MULTI-HOP MESH
NETWORKS
The Information and Communication Technology (ICT) book series focuses on creating useful connections between advanced communication theories, practical designs, and end-user applications in various next generation networks and broadband access systems, including fiber, cable, satellite, and wireless. The ICT book series examines the difficulties of applying various advanced communication technologies to practical systems such as WiFi, WiMax, B3G, etc., and considers how technologies are designed in conjunction with standards, theories, and applications.

The ICT book series also addresses application-oriented topics such as service management and creation and end-user devices, as well as the coupling between end devices and infrastructure.

T. Russell Hsing, PhD, is the Executive Director of Emerging Technologies and Services Research at Telcordia Technologies. He manages and leads the applied research and development of information and wireless sensor networking solutions for numerous applications and systems. Email: thsing@telcordia.com

Vincent K.N. Lau, PhD, is Associate Professor in the Department of Electrical Engineering at the Hong Kong University of Science and Technology. His current research interest is on delay-sensitive cross-layer optimization with imperfect system state information. Email: eeknlau@ee.ust.hk

Wireless Internet and Mobile Computing: Interoperability and Performance
Yu-Kwong Ricky Kwok and Vincent K. N. Lau

Digital Signal Processing Techniques and Applications in Radar Image Processing
Bu-Chin Wang

The Fabric of Mobile Services: Software Paradigms and Business Demands
Shoshana Loeb, Benjamin Falchuk, and Euthimios Panagos

Fundamentals of Wireless Communications Engineering Technologies
K. Daniel Wong

RF Circuit Design, Second Edition
Richard Chi-Hsi Li

Networks and Services: Carrier Ethernet, PBT, MPLS-TP, and VPLS
Mehmet Toy

Equitable Resource Allocation: Models, Algorithms, and Applications
Hanan Luss

Vehicle Safety Communications: Protocols, Security, and Privacy
Luca Delgrossi and Tao Zhang

WiFi, WiMAX, and LTE Multi-hop Mesh Networks: Basic Communication Protocols and Application Areas
Hung-Yu Wei, Jarogniew Rykowski, and Sudhir Dixit
WIFI, WIMAX, AND LTE MULTI-HOP MESH NETWORKS

Basic Communication Protocols and Application Areas

Hung-Yu Wei
National Taiwan University, Taiwan

Jarogniew Rykowski
Poznań University of Economics, Poland

Sudhir Dixit
Hewlett-Packard Laboratories, India
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>xi</td>
</tr>
<tr>
<td>Preface</td>
<td>xiii</td>
</tr>
<tr>
<td>About the Authors</td>
<td>xvii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xix</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xxv</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2 Architectural Requirements for Multi-hop and Ad-Hoc Networking</td>
<td>9</td>
</tr>
<tr>
<td>2.1. When and Where Do We Need Ad-Hoc Networking?</td>
<td>9</td>
</tr>
<tr>
<td>2.2. When Do We Need Multi-hop? How Many Hops Are Sufficient/Necessary?</td>
<td>12</td>
</tr>
<tr>
<td>2.3. Anonymity versus Authorization and Authentication</td>
<td>13</td>
</tr>
<tr>
<td>2.4. Security and Privacy in Ad-Hoc Networks</td>
<td>17</td>
</tr>
<tr>
<td>2.5. Security and Privacy in Multi-hop Networks</td>
<td>18</td>
</tr>
<tr>
<td>2.6. Filtering the Traffic in Ad-Hoc Networking and Multi-hop Relaying</td>
<td>20</td>
</tr>
<tr>
<td>2.7. QoS</td>
<td>23</td>
</tr>
<tr>
<td>2.8. Addressability</td>
<td>24</td>
</tr>
<tr>
<td>2.9. Searchability</td>
<td>28</td>
</tr>
<tr>
<td>2.10. Ad-Hoc Contexts for Next-Generation Searching</td>
<td>29</td>
</tr>
<tr>
<td>2.11. Personalization Aspects in Ad-Hoc Information Access</td>
<td>31</td>
</tr>
<tr>
<td>2.12. Multi-hop Networking: Technical Aspects</td>
<td>32</td>
</tr>
<tr>
<td>2.13. Summary</td>
<td>34</td>
</tr>
<tr>
<td>2.13.2. When and Where Do We Need Ad-Hoc Networking?</td>
<td>35</td>
</tr>
<tr>
<td>2.13.3. How Do We Effectively Combine Anonymity/Privacy with Safety/Security?</td>
<td>36</td>
</tr>
<tr>
<td>2.13.4. How Do We Personalize Network Access, Including User-Oriented Information Filtering?</td>
<td>37</td>
</tr>
</tbody>
</table>

2.13.6. How Do We Support Frequently Dis- and Reconnected Users, Including Efficient Propagation of Important Information to Newcomers? 38

3 Application Areas for Multi-hop and Ad-Hoc Networking 42

3.1. Telematics 42
3.1.1. Introduction to Telematics Applications 42
3.1.3. Traffic Lights Assistance 52
3.1.4. CB-Net Application 56
3.1.5. City-Transportation Integrated Support 62

3.2. E-Ticket Applications 67

3.3. Telemedicine 69

3.4. Environment Protection 71

3.5. Public Safety 73
3.5.1. Ad-Hoc Monitoring for Public Safety Applications 74
3.5.2. Broadcasting Public Safety Information 81

3.6. Groupware 84

3.7. Personal, Targeted, Contextual Marketing and Shopping Guidance 85

3.8. Intelligent Building 87
3.8.1. “Intelligent Hospital” Idea 90
3.8.2. “Interactive Museum” Idea 92
3.8.3. Intelligent Ad-Hoc Cooperation at a Workplace 93

3.9.1. Monetary Unit for Ad-Hoc and Multi-hop Services 94
3.9.2. Which Ad-Hoc and Multi-hop Functionality Should Be Paid For? 96
3.9.3. Quality-of-Service and Trustability 97
3.9.4. Pay-per-Access Mode and Subscriptions 98
3.9.5. Legal Regulations 100
3.9.6. Ad-Hoc and Multi-hop Networking versus Commercial Networks and Network Providers 100

3.10. Summary 102

4 Mesh Networking Using IEEE 802.11 Wireless Technologies 109

4.1. IEEE 802.11 110
4.1.1. WiFi and IEEE 802.11 Wireless LAN 111
4.1.2. IEEE 802.11 Mesh Network Architectures 113
4.2. IEEE 802.11s: Standard for WLAN Mesh Networking 116
 4.2.1. Additional Functions in 802.11s 120
 4.2.2. WiFi Certification and Deployments of IEEE 802.11s 120

4.3. Summary 121

5 Wireless Relay Networking Using IEEE 802.16 WiMAX Technologies 122
 5.1. IEEE 802.16 Overview and Architecture 122
 5.2. IEEE 802.16j Relay System Overview 123
 5.2.1. Nontransparent Relay versus Transparent Relay 124
 5.2.2. Connection Types 125
 5.2.3. MAC PDU Transmission Mode 126
 5.2.4. Relay MAC PDU 128
 5.2.5. Subheaders in Relay MAC PDU 131
 5.3. IEEE 802.16j Frame Structure 132
 5.3.1. Frame Structure in Nontransparent Mode 135
 5.3.2. Frame Structure in Transparent Mode 137
 5.4. Path Management in 802.16j Relay 139
 5.4.1. Explicit Path Management 140
 5.4.2. Implicit Path Management 142
 5.4.3. Contiguous Integer Block CID Assignment for Implicit Path Management 143
 5.4.4. Bit Partition CID Assignment for Implicit Path Management 144
 5.4.5. Path Selection and Metrics 146
 5.5. Radio Resource Management 147
 5.5.1. RRM with Distributed Scheduling 147
 5.5.2. Bandwidth Request Mechanism in WiMAX 147
 5.5.3. Downlink Flow Control 154
 5.5.4. RRM with Centralized Scheduling 156
 5.5.5. SS-Initiated Bandwidth Request in Centralized Scheduling 159
 5.6. Interference Management 163
 5.6.1. Interference Measurement 163
 5.6.2. RS Neighborhood Discovery and Measurements 167
 5.6.3. Relay Amble (R-Amble) Transmission 168
 5.7. Initialization and Network Entry 170
 5.7.1. Network Entry Overview 170
 5.7.2. Network Entry for Relay Station 172
 5.7.3. Fast Reentry 176
 5.7.4. Network Entry for Subscriber Station (Through RS) 177
 5.8. Mobility Management and Handoff 177
 5.8.1. Design Issues: Mobility Management in Multi-hop Relay Network 177
5.8.2. Overview of Mobile Station Handoff Protocol Design in 802.16j 179
5.8.3. Neighborhood Network Topology Advertisement 180
5.8.4. Mobile Node Scanning 181
5.8.5. Association 183
5.8.6. Handoff Execution 185
5.8.7. Handoff Optimization with Context Transfer 186
5.8.8. Mobile Relay Station Handoff 187

5.9. Power Management 189
5.9.1. Sleep Mode 191
5.9.2. Idle Mode 193

5.10. HARQ and Reliable Transmission 195
5.10.1. Design Issues: HARQ in Multi-hop Relay Network 195
5.10.2. Overview of HARQ Design in 802.16j 196
5.10.3. HARQ in Centralized Scheduling 197
5.10.4. Downlink HARQ in Nontransparent Mode 198
5.10.5. Downlink HARQ in Transparent Mode: Hop-by-Hop HARQ Operation 202
5.10.6. Downlink HARQ in Transparent Mode: RS-assisted HARQ 204
5.10.7. Uplink HARQ in Nontransparent Mode 207
5.10.8. Uplink HARQ in Transparent Mode 209
5.10.9. HARQ in Distributed Scheduling 211

5.11. Multicast, Broadcast, and RS Grouping 211
5.11.1. Multicast and Broadcast 211

5.12. RS Grouping 215

5.13. Summary 220

6 Wireless Relay Networking with Long Term Evolution (LTE) 221
6.1. Overview of the LTE Relay System 221
6.1.1. LTE Relay Deployment Scenario 223
6.1.2. Overview of Resource Partitioning in In-Band Relay 224

6.2. Physical Layer for LTE Relay 226
6.2.1. Physical Layer Channels 226
6.2.2. Frame Structure in Physical Layer Channels 227

6.3. LTE Relay System Architecture 228
6.3.1. Protocol Stacks for Radio Interface 228
6.3.2. S1 Interface 231
6.3.3. RN Initialization and Startup Procedure 234

6.4. LTE Relay System Design Issues 237
6.4.1. Overview of Architecture and Design Issues 237
6.4.2. Design Issue: Downlink Flow Control 238
6.4.3. Design Issue: End-to-End QoS Configuration 238
6.4.4. Design Issue: Un Interface Configuration 239
6.4.5. Design Issue: Connection Establishment 240
6.4.6. Design Issue: Radio Link Failure and Connection Reestablishment 240
6.4.7. Design Issue: Other Design Options 241

6.5. Future Development in LTE Relay 242
6.5.1. Mobile Relay 242
6.5.2. Advanced Link Transmission 242
6.5.3. Other Deployment Scenarios and Architecture 243

6.6. Summary 244

7 Summary 245

References 247

Index 251
FOREWORD

Increasing complexity of communication networks is a growing challenge for network designers, network operators, and network users. This raises the question of how this increased complexity can be reasonably managed without adding even more complexity, while also reducing or completely eliminating the cost of network operations and management. Therefore, the self-organizing characteristic of networks, whether in access, metro, core, or end-to-end, is being hailed as the next holy grail of (and a potentially disruptive technology in) networking and communication. Imagine wireless nodes (an internet of people, things, devices, and services) being able to connect with each other autonomously and self-organize based on their battery power, bandwidth needs, security requirements, and billing costs, among other requirements, with or without an entity in control. Indeed, it is going to change the game by opening up lots of new possibilities both technologically and commercially. Wireless mesh networking (WMN) technology enables the wireless entities to connect autonomously and reconfigure in the face of changing radio environment. WMN is rapidly evolving and reaching the mainstream, made possible by several standards that have been developed, and vendors and service providers building to those standards. WMNs can range from mobile ad-hoc networks (MANETS) to infrastructure-based stationary networks and can even be multi-hop. The three predominant mesh technologies that have been standardized and deployed are IEEE WLAN (aka Wi-Fi), WiMAX, and LTE. From the commercial perspective, WMNs enable various business models, ranging from free to billable, depending on whether or not a service provider is involved.

This book provides an excellent overview of wireless mesh networks in a manner that is easy for a nonexpert to understand, yet technical to the extent that the reader can appreciate the why, what, and how of mesh networking and the strengths and weaknesses of the dominant mesh networking standards: Wi-Fi, WiMAX, and LTE. What is unique about this book is that the authors take a very logical top-down approach. They first spend a good deal of time defining/explaining the topic, such as describing the compelling application areas driving the need for mesh networking, then they describe the various technical challenges emanating from those potential use cases, followed by a detailed technical overview of the various types of wireless mesh networks, their evolution to support IEEE WLAN to 4G technologies of WiMAX and LTE and beyond 4G (such as the LTE-Advanced). Since understanding the
technologies alone is not sufficient to develop a complete system, the authors also discuss the architectural and deployment issues of WMNs in great detail. This is the first book of its kind that has been written in a style best suited to those who wish to get a broad overview of WMNs, while avoiding the mathematics, formulas, and deep technical details. I am glad to find that the authors have not hesitated to bring out the technical and business challenges that WMNs face, which open up new vistas to research. I have enjoyed reading the manuscript, and I am sure you will enjoy the book, too!

Prith Banerjee

Executive Vice President and Chief Technology Officer, ABB Ltd
Formerly Senior Vice President of Research and Director, Hewlett-Packard Laboratories
Notwithstanding its infancy, wireless mesh networking (WMN) is a hot and growing field. Wireless mesh networks began in the military, but have since become of great interest for commercial use in the last decade, both in local area networks and metropolitan area networks. The attractiveness of mesh networks comes from their ability to interconnect either mobile or fixed devices with radio interfaces, to share information dynamically, or simply to extend range through multi-hopping. This enables easy use and reliability through alternate connectivity paths between source and destination nodes. Mesh networks are of immense interest throughout the world, and there is no reason to believe that this trend will diminish, as we live in a world where wireless continues to increase in popularity in all kinds of devices and access networks. This is primarily due to the need for devices to connect wirelessly in the immediate neighborhood and users wanting connectivity from anywhere anytime, whether mobile or stationary. Furthermore, the vision of a hyperconnected world will certainly strengthen the importance of wireless mesh networks in the future. The trends in location- and context-based social networking, wireless content and service delivery, sensor networks, vehicle area networks, and enterprises going wireless and mobile will only boost the role of mesh networks in the future. In the early days of WMNs, there were indeed exaggerated claims about their capabilities and applicabilities to all types of scenarios, which are natural of any new technology going through the hype cycle; but recently, such networks are finding true applications when they are carefully designed and deployed for specific scenarios and use cases.

While the consumers, solution developers, and networking engineers are typically not interested in the intricate details of technology, they are certainly interested in issues they might end up dealing with and the solutions to those issues. Nonetheless, in networking today, some knowledge of technology is essential to arriving at the correct networking architecture and choosing the correct equipment and software; otherwise, the goal of attaining the desired performance may remain unfulfilled. In this book, we provide broad coverage of wireless mesh networks in a manner that is easy to understand, yet technical. The book is intended for those who wish to learn about mesh networking from a practical point of view, but feel intimidated by the deep technical details found in the standards documents and/or textbooks. We explain the motivation behind WMNs, their evolution from IEEE WLAN to WiMAX to long term evolution (LTE) and to LTE-Advanced, and what lies ahead in the future.
Throughout the book, we have kept the use of mathematics and formulas to a minimum, and wherever we have had to use them we have made sure that the equations are explained qualitatively and the flow of the material remains seamless. Wherever and whenever appropriate, we have given ample examples of user scenarios, deployable architectures, and real-world implementations using commercially available equipment.

It is impossible to cover in detail a broad topic such as WMN in a single book. Therefore, rather than cover every topic in detail, we have presented the key concepts, architectures, and dominant wireless technologies, as well as discussed the performance issues in general and some of the real-world implementations in more specific terms. The book is organized in seven independent parts to allow the reader to skip the parts with which he or she may already be familiar (Fig. P.1). The first chapter introduces the reader to the subject of mesh networking and describes the drivers behind this important technology.

![Figure P.1. Organization of the book.](image-url)
The second and third chapters address the architectural and business/economics aspects of mesh networking. These chapters also cover some key application areas of mesh networking. Chapter 4 briefly describes the application of mesh concepts to IEEE 802.11 (WiFi) Wireless LAN, where it all began and is probably the most researched and written about. Chapter 5 covers the topic of mesh networking in IEEE 802.16 (WiMAX) radio access networks. Chapter 6 presents mesh and relay networking in LTE and LTE-Advanced radio access networks standardized by the International Telecommunication Union. Both IEEE 802.16 and LTE/LTE-A wireless standards have been defined and positioned as 4G radio technologies. Finally, in Chapter 7, we summarize the book and discuss the future directions in wireless mesh networks.

We thank Dr. Russell Hsing of Telcordia, ICT Book Series Editor, John Wiley and Sons, and Dr. Simone Taylor of John Wiley and Sons for their patience with us (with several missed deadlines) while we worked on the manuscript. Finally, we have made every attempt to be accurate and factual in the book, but it would be surprising if there were no errors, which would be solely ours. Please send any questions, comments, or corrections directly to us.

Hung-Yu Wei
Taiwan
hywei@cc.ee.ntu.edu.tw

Jarogniew Rykowski
Poznań, Poland
rykowski@kti.ue.poznan.pl

Sudhir Dixit
Palo Alto, CA, USA
sudhir.dixit@ieee.org

January 31, 2013
ABOUT THE AUTHORS

HUNG-YU WEI received a BS degree in Electrical Engineering from National Taiwan University in 1999. He received MS and PhD degrees in Electrical Engineering from Columbia University in 2001 and 2005, respectively. Dr. Wei was a summer intern at Telcordia Applied Research in 2000 and 2001. He was with NEC Labs America from 2003 to 2005. He joined the Department of Electrical Engineering at the National Taiwan University in July 2005 as an Assistant Professor, and he is currently Associate Professor in the Department of Electrical Engineering and Graduate Institute of Communication Engineering at National Taiwan University. He received the NTU Excellent Teaching Award in 2008 and the “Recruiting Outstanding Young Scholar Award” from the Foundation for the Advancement of Outstanding Scholarship in 2006. He was a consulting member of the Acts and Regulation Committee of the National Communications Commission during 2008–2009. He has been participating in IEEE 802.16 and 3GPP standardization activities. His research interests include wireless networking, game theoretic models for communications networks, and mobile computing.

JAROGNIEW RYKOWSKI received an MSc degree in Computer Science from the Technical University of Poznań, Poland in 1986 and a PhD degree in Computer Science from the Technical University of Gdansk, Poland in 1995. In 2008, he received a habilitation degree from the Institute of Computer Science, Polish Academy of Science (Warsaw, Poland). From 1986 to 1992, he was with the Institute of Computing Science at the Technical University of Poznań. From 1992 to 1995, he worked as an Assistant in the Franco-Polish School of New Information and Communication Technologies in Poznań. In 1995, he became an Associate Professor in the School. Since 1996, he has been with the Poznań University of Economics, working as an Assistant Professor in the Department
of Information Technology. He participated in several industrial projects concerning operating systems, networks, programming language compilers (assemblers and LISP), multimedia databases, and distributed systems for e-commerce. His research interests include software agents, with special emphasis put on personalized access to WWW servers by means of mobile devices and telecommunication networks. His recent interests have gone toward applications of Internet of Things and calm-computing devices, including “intelligent buildings and workplaces,” semantic support for IoT systems, telematics, ad-hoc and multi-hop networking, and related systems. He is the author and coauthor of 3 books, over 45 papers in journals and conference proceedings, and 2 patents.

SUDHIR DIXIT is the Director of Hewlett-Packard Laboratories, India. Prior to joining HP Labs in June 2009 in Palo Alto, California, Dr. Dixit held a joint appointment as CTO at the Centre for Internet Excellence and Research Manager at the Centre for Wireless Communications, both at the University of Oulu, Finland. From 1996 to 2008, he held various positions with Nokia: Senior Research Manager, Research Fellow, Head of Nokia Research Center (Boston), and in the later years, as Head of Network Technology (USA) for Nokia Siemens Networks. He has also held the position of Senior Director at Research In Motion, and other senior management and technical positions at such companies as Verizon (previously NYNEX and GTE Labs), Motorola, Wang Labs, and Harris Corporation. Dr. Dixit received his PhD degree in Electronic Science and Telecommunications from the University of Strathclyde, Glasgow, UK, MBA degree from the Florida Institute of Technology, Melbourne, Florida, ME degree from the Birla Institute of Technology and Science, Pilani, India, and BE degree from Maulana Azad National Institute of Technology, Bhopal, India. He is an Adjunct Professor of Computer Science at the University of California, Davis, and a Docent (Adjunct Professor) of Telecommunications at the University of Oulu. He has published over 200 papers, edited 5 books, and holds 20 patents. He is a Fellow of IEEE (USA), IET (UK), and IETE (India).
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.1</td>
<td>Organization of the book.</td>
<td>xiv</td>
</tr>
<tr>
<td>1.1</td>
<td>Examples of (a) mobile ad-hoc (infrastructureless) mesh network and (b) immobile (infrastructure-based) mesh network.</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Use of long range WLAN (Super WiFi) mesh to extend coverage to larger areas.</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Use of long range WLAN (Super WiFi) mesh to extend coverage to larger areas.</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>Networking paradigms: (a) conventional wireless cellular network, (b) multi-hop wireless relay network, and (c) hybrid wireless network integrating cellular structure and multi-hop relay.</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>Mutual identification of users: (a) two users who trust each other just exchange their pseudonyms, (b) additional verification involving preregistration, and (c) inspection of a pseudonym by means of PKI infrastructure and trusted third party.</td>
<td>16</td>
</tr>
<tr>
<td>2.2</td>
<td>Evolution from classical to fuzzy and contextual addressing.</td>
<td>26</td>
</tr>
<tr>
<td>3.1</td>
<td>Possible usage scenarios of extended navigation support: (a) typical navigation support, (b) mutual exchange of vehicle positions, (c) additional information about other vehicle states (direction of movement and speed), (d) warnings about possible dangerous situations on the road, and (e) Highway Code violations.</td>
<td>49</td>
</tr>
<tr>
<td>3.2</td>
<td>Basic modes of operation for traffic lights assistance: (a) all-around centered transmission and (b) disjoined transmission separated for the road directions.</td>
<td>53</td>
</tr>
<tr>
<td>3.3</td>
<td>Screen look: (a) after simple filtering, (b) with extended filtering, and (c) LED based (no extended filtering).</td>
<td>54</td>
</tr>
<tr>
<td>3.4</td>
<td>Extended signaling: (a) moments of changing the lights and (b) warnings and alerts.</td>
<td>54</td>
</tr>
<tr>
<td>4.1</td>
<td>IEEE 802 standards related to 802.11 and 802.11s.</td>
<td>111</td>
</tr>
<tr>
<td>4.2</td>
<td>An illustration of an extended service set when multiple basic service sets are integrated with a distribution system, which can be wireline or wireless.</td>
<td>113</td>
</tr>
</tbody>
</table>
Figure 4.3. Basic mesh network architecture (10–15 access points per gateway). 114
Figure 4.4. Flat mesh architecture using access points that support only single radio omnidirectional antennas. 114
Figure 4.5. Flat mesh architecture using access points that support omnidirectional multiple radios (more than one). Access to client devices is through 802.11b/g. 115
Figure 4.6. An illustration of a layered, multiradio omnidirectional and directional intramesh architecture. 116
Figure 4.7. 802.11s mesh header field introduced in the frame body. 118
Figure 4.8. The 802.11s mesh network architecture depicting connectivity with different types of network. 118
Figure 5.1. IEEE 802.16j network architecture. 123
Figure 5.2. Relay MAC PDU format. 129
Figure 5.3. Relay MAC header. 129
Figure 5.4. Frame structure for nontransparent mode. 133
Figure 5.5. Frame structure for transparent mode (uplink radio resource in time domain). 134
Figure 5.6. Frame structure for transparent mode (uplink radio resource in frequency domain). 134
Figure 5.7. Classification of path management schemes. 140
Figure 5.8. Example of contiguous integer block CID assignment for implicit path management. 144
Figure 5.9. Example of bit partition CID assignment for implicit path management ($k = 2$, $n = 4$). 145
Figure 5.10. Bandwidth request (using BW REQ header) in multi-hop relay 802.16j system. 149
Figure 5.11. Bandwidth request (using CDMA code) in multi-hop relay 802.16j system. 150
Figure 5.12. Bandwidth grant with RS-SCH(RS scheduling information) management message. 151
Figure 5.13. Bandwidth request RS polling. 152
Figure 5.14. Bandwidth request with RS-SCH and UL-MAP polling. 152
Figure 5.15. Classification of downlink flow control schemes. 155
Figure 5.16. Downlink flow control in distributed scheduling: localized control scheme. 156
Figure 5.17. Downlink flow control in distributed scheduling: centralized control scheme. 157
Figure 5.18. SS initiates bandwidth request with contention-based CDMA ranging in centralized scheduling relay system—RS transmits MR_RNG-REP with available uplink bandwidth. 160
Figure 5.19. SS initiates bandwidth request with contention-based CDMA ranging in centralized scheduling relay system—RS needs to request extra uplink bandwidth for signaling. 161
| Figure 5.20. | Bandwidth request procedure—RS forwards bandwidth request when uplink bandwidth is available. | 162 |
| Figure 5.21. | RS interference measure (RS1 and RS4 transmit sounding signals). | 165 |
| Figure 5.22. | RS interference measure (RS2, RS3, and RS5 transmit sounding signals). | 166 |
| Figure 5.23. | Intercell active interference measurement. | 166 |
| Figure 5.24. | Example of repeated R-amble transmission (period = 4 frames, offset = 1 frame). | 168 |
| Figure 5.25. | Example of one-time R-amble transmission (iteration = 2, active duration = 1 frame, interleaving interval = 3 frames). | 168 |
| Figure 5.26. | Classification of R-amble transmission based on transmission pattern and usage cases. | 169 |
| Figure 5.27. | Procedures of neighborhood measurement. | 170 |
| Figure 5.28. | Access station selection in network entry process. (a) MR-BS serves as the access station. (b) RS serves as the access station. (c) Optional second stage access station selection. | 171 |
| Figure 5.29. | Network entry procedures. | 172 |
| Figure 5.30. | Intra-MR and inter-MR handoff scenarios. | 178 |
| Figure 5.31. | Signaling flows for scanning configuration with distributed scheduling RS. | 182 |
| Figure 5.32. | Signaling flows for scanning configuration with centralized scheduling. | 183 |
| Figure 5.33. | Handoff signaling flow. | 185 |
| Figure 5.34. | Optimized handoff with intracell context transfer (serving station initiated). | 187 |
| Figure 5.35. | Optimized handoff with intercell context transfer (serving station initiated). | 187 |
| Figure 5.36. | Optimized handoff with intracell context transfer (target station initiated). | 188 |
| Figure 5.37. | Optimized handoff with intercell context transfer (target station initiated). | 188 |
| Figure 5.38. | Mobile RS handoff procedures. | 189 |
| Figure 5.39. | Classifications of HARQ operations in IEEE 802.16j. | 197 |
| Figure 5.40. | Encoded feedback C_x to indicate where the packet error occurs; C_0 implies data received without error; C_x implies data error is x-hop away from the MR-BS. | 200 |
| Figure 5.41. | Downlink HARQ in nontransparent mode: encoded feedback in uplink acknowledge channel (UL ACKCH). | 201 |
| Figure 5.42. | Topology for the downlink HARQ transmission example and UL ACKCH feedback (ACK/NAK). | 201 |
| Figure 5.43. | Centralized scheduling downlink hop-by-hop HARQ in transparent mode: successful transmission. | 203 |
Figure 5.44. Centralized scheduling downlink hop-by-hop HARQ in transparent mode: error in relay link. 203
Figure 5.45. Centralized scheduling downlink hop-by-hop HARQ in transparent mode: error in access link. 204
Figure 5.46. Centralized scheduling downlink RS-assisted HARQ in transparent mode: successful transmission. 205
Figure 5.47. Centralized scheduling downlink RS-assisted HARQ in transparent mode: errors in both access link and relay link. 206
Figure 5.48. Centralized scheduling downlink RS-assisted HARQ in transparent mode: error in relay link but successful reception in monitoring RS. 206
Figure 5.49. Centralized scheduling uplink HARQ in nontransparent mode: successful transmission and ACK. 208
Figure 5.50. Centralized scheduling uplink HARQ in nontransparent mode: error and NAK. 209
Figure 5.51. Centralized scheduling uplink HARQ in transparent mode: the MR-BS receives forwarded data from the RS. 210
Figure 5.52. Centralized scheduling uplink HARQ in transparent mode: the MR-BS receives data directly from the SS. 210
Figure 5.53. Network topology and delay values in a multicast and broadcast service example; the waiting time in each hop depends on the network topology and latency values. 213
Figure 5.54. Example of synchronous multicast and broadcast transmission timing. 215
Figure 5.55. RS grouping in IEEE 802.16j system. 216
Figure 5.56. Macrodiversity transmission schemes and parallel transmission schemes in RS grouping (a) downlink macro diversity transmission; (b) uplink macro diversity transmission; (c) downlink parallel transmission; and (d) uplink parallel transmission. 218
Figure 6.1. LTE relay architecture and terminologies. 222
Figure 6.2. Example of resource partitioning in the FDD LTE relay system. 225
Figure 6.3. Example of resource partitioning in the TDD LTE relay system. 225
Figure 6.4. MBSFN subframe configuration in the access link (MBSFN subframes are the unused time gap to avoid interference). 226
Figure 6.5. Protocol stack for Un interface user plane. 229
Figure 6.6. Protocol stack for Un interface control plane. 230
Figure 6.7. Interfaces in LTE relay system architecture. 230
Figure 6.8. Protocol stack for S1 interface user plane (S1-U). 231
Figure 6.9. Protocol stack for S1 interface control plane (S1-MME). 232
Figure 6.10. Protocol stack for X2 interface user plane (X2-U). 233